Q. Code:172076

Reg. No.

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024 Fourth Semester

CH22401 – HEAT TRANSFER

(Chemical Engineering)

(Regulation 2022)

TIME:3 HOURS		MAX. MARKS: 100	
	RSE STATEMENT DMES		RBT LEVEL
CO 1	Impart knowledge on the various modes of heat transfer and apply conduction hea concept	t transfer	3
CO 2	Apply convective heat transfer concept to fluids without phase change		3
CO 3	Develop the ability to analyze heat transfer processes with phase change		4
CO 4	Apply the concepts of evaporation to estimate steam economy, capacity of single as multiple effect evaporators	nd	3
CO 5	Design thermal analysis of heat exchanger using LMTD and NTU method		4
	PART- A (20x2=40Marks)		
	(Answer all Questions)	CO	DDT
		CO	LEVEL
1.	Report the importance of heat transfer in Chemical Engineering with respect to all t	he 1	2
	modes of heat Transfer.		
2.	Infer the effect of temperature on thermal conductivity.	1	2
3.	Give any two example of surface where fins are used for heat transfer.	1	2
4.	Relate the various methods used to measure the physical property thermal conductivit	y. 1	3
5.	Convective heat transfer coefficient strongly depends on what factors?	2	2
6.	Generalize Newton's law of Cooling statement.	2	2
7.	Restate the reason for adding fouling factor.	2	2
8.	Order the three resistance in series for overall resistance to heat flow from a hot fluid	to 2	3
	cold fluid.		
9.	Cite the type of boiling in the presence of bulk fluid flow and in the absence of bu	ılk 3	2
	fluid flow.		
10.	Differentiate saturated and sub cooled boiling under atmospheric pressure.	3	2
11.	Condensation will occur when the temperature of vapor is reduced below	its 3	2
	Resistance to heat transfer will be in Condensation.		
12.	Compute the factor which is more likely to remove the stagnant non condensable gas	ses 3	3
	from the vicinity of the surface and thus improve the heat transfer.		
13.	Infer all other four names used to refer the radiation shape factor.	4	2

	Q	Q. Code:172076		
14.	Write the equation used to get heat transfer coefficient for radiation.	4	4	2
15.	Predict any two advantage of forced circulation evaporators.	4	4	2
16.	Collect any two examples of evaporation.	4	4	3
17.	Restate any two heat exchange operation carried out in Chemical Process plants .	5	5	2
18.	Draw the temperature profile for both co current and counter current flow.	5	5	2
19.	Indicate the purpose of having effectiveness- NTU method of heat exchanger analy	sis.	5	2
20.	Mention any two type of heat exchanger used in process industries and cite its	field 5	5	3
	application.			

PART- B (5x 10=50Marks)

		Marks	CO	RBT LEVEL
21. (a)	A composite furnace wall consists of 250 mm of fire brick, 120 mm of	(10)	1	3
	insulating brick and 80 mm of building brick. The individual heat transfer			
	coefficient at the inside and outside of the wall are 80 W/m ² C and 7W/m ² °C			
	respectively. The temperature of gas within the furnace is 1300°C. The			
	ambient air temperature outside the furnace is 50°C. The maximum			
	temperature of insulating brick should not exceed 1025°C			
	k of firebrick = $1.66 \text{ W/m}^{\circ}\text{C}$			
	k of insulating brick = $0.32 \text{ W/m}^{\circ}\text{C}$			
	k building block = $0.69 \text{ W/m}^{\circ}\text{C}$			
	Calculate:			
	i) The rate of heat transfer per unit area.			
	ii) Interface temperature fire brick and insulating brick.			
	(OR)			
(b)	Derive the heat flow equation used through a hallow cylinder.	(10)	1	3

22. (a) Derive the equation for forced convection by using dimensional analysis(10)23

 $N_{NU} = f(N_{Re}, N_{Pr})$

(OR)

- (b) A steam pipe 20 mm diameter and 1.5 m long has been placed horizontally (10) 2 3 and exposed to still air at 40°C. If the pipe wall temperature is 180°C, determine the rate of heat loss.
- 23. (a) Describe various pool boiling regimes with a neat sketch(10)33

Q. Code:172076

CO

Marks

RBT

(**OR**)

- (b) Draw temperature and velocity profile for film condensation on a vertical (10) 3 3 plate.
- 24. (a) Establish the net energy transferred per unit area per unit time between two (10) 4 4 grey surfaces with suitable sketches.

(OR)

- (b) Illustrate pros and cons of Single effect and multiple effect evaporators.
 (10) 4 4
 Also compare forward and backward methods of feeding multiple effect evaporators.
- 25. (a) In a processing plant water is to be cooled from 28°C to 10°C by using brine (10) 5 4 solution entering at an inlet temperature of -2°Cand leaving at 4°C. Calculate the area required when using a shell and tube heat exchanger with the water making one shell pass and the brine making two passes. Assume an average overall heat transfer coefficient of 750 W/m^{2 K} and a design heat load of 8000 W. Use Correction factor F as 0.92

(OR)

(b) Water enters a cross flow heat exchanger (Both Fluids are unmixed) at 10 (10) 5 4
°Cand flows at the rate of 6200 Kg /h to cool 5500 Kg /hof air that is initially at 60°C. Assume the U value to be 220 W/m² K. For an exchanger surface area of 30m². Determine the exit temperature of both air and water. Data:
Specific heat of water and air are 4180 J/Kg K and 1010 J/ Kg K respectively

Heat Exchanger Effectiveness is 0.95

PART- C (1x 10=10Marks)

(Q.No.26 is compulsory)

26. An rubber insulating board of thermal conductivity 0.85 W/(m.°C) is to be (10) 5 5 used to limit the heat losses to 80 W/m² for a temperature difference of 160°C across the board. Predict the thickness of insulating board.
